Reduced Complexity Decoding of n x n Algebraic Space-Time Codes

نویسندگان

  • Amaro Barreal
  • Camilla Hollanti
  • David A. Karpuk
چکیده

Algebraic space–time coding allows for reliable data exchange across fading multiple-input multiple-output channels. A powerful technique for decoding space–time codes is Maximum-Likelihood (ML) decoding, but well-performing and widely-used codes such as the Golden code often suffer from high ML-decoding complexity. In this article, a recursive algorithm for decoding general algebraic space–time codes of arbitrary dimension is proposed, which reduces the worst-case decoding complexity from O(|S| 2 ) to O(|S|).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isotropic Constant Dimension Subspace Codes

 In network code setting, a constant dimension code is a set of k-dimensional subspaces of F nq . If F_q n is a nondegenerated symlectic vector space with bilinear form f, an isotropic subspace U of F n q is a subspace that for all x, y ∈ U, f(x, y) = 0. We introduce isotropic subspace codes simply as a set of isotropic subspaces and show how the isotropic property use in decoding process, then...

متن کامل

Efficient Burst Error Correction by Hermitian Codes

Hermitian codes belong to a powerful class of algebraic geometry codes, which allow to correct many independent errors. We show that Hermitian codes can correct many bursts of errors as well. Decoding of a Hermitian (N,K) code over q2 can be reduced to decoding of interleaved extended Reed-Solomon codes. Using this fact, we propose an efficient unique decoding algorithm correcting up to (N −K)/...

متن کامل

A Complexity Reducing Transformation in Algebraic List Decoding of Reed-Solomon Codes

The main computational steps in algebraic soft-decoding, as well as Sudan-type list-decoding, of ReedSolomon codes are interpolation and factorization. A series of transformations is given for the interpolation problem that arises in these decoding algorithms. These transformations reduce the space and time complexity to a small fraction of the complexity of the original interpolation problem. ...

متن کامل

Diagonal algebraic space-time block codes

We construct a new family of linear space-time block codes by the combination of rotated constellations and the Hadamard transform, and we prove them to achieve the full transmit diversity over a quasi-static or fast fading channels. The proposed codes transmit at a normalized rate of 1 symbol/sec. When the number of transmit antennae n = 1, 2 or n is a multiple of 4 we spread a rotated version...

متن کامل

Algebraic Soft Decoding Algorithms for Reed-Solomon Codes Using Module

The interpolation based algebraic decoding for Reed-Solomon (RS) codes can correct errors beyond half of the code’s minimum Hamming distance. Using soft information, algebraic soft decoding (ASD) can further enhance the performance. This paper introduces two ASD algorithms that utilize a new interpolation technique, the module minimization (MM). Achieving the desirable Gröbner basis, the MM int...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1501.06686  شماره 

صفحات  -

تاریخ انتشار 2015